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UNG Math 1111 Note 

Chapter 3  
Polynomial Functions (page 235) 

3.1 Polynomial Functions and Their Graphs  

Objectives: By the end of this section students should be able to: 
 Identify polynomial Functions 
 Graph basic polynomial functions 
 Identify end behavior and leading term 
 Use zeros in graphing polynomials 
 Find local maximum and local minimum 

Definition of a Polynomial Function 
A polynomial function of degree n is a function of the form 
𝒑𝒑(𝒙𝒙) =  𝒂𝒂𝒏𝒏𝒙𝒙𝒏𝒏 + 𝒂𝒂𝒏𝒏−𝟏𝟏𝒙𝒙𝒏𝒏−𝟏𝟏 + ⋯+ 𝒂𝒂𝟏𝟏𝒙𝒙+ 𝒂𝒂𝟎𝟎, where n is a non-negative integer and 𝒂𝒂𝒏𝒏 ≠ 𝟎𝟎 
o The numbers 𝒂𝒂𝒏𝒏,  𝒂𝒂𝒏𝒏−𝟏𝟏,   .  .  .𝒂𝒂𝟏𝟏,  𝒂𝒂𝟎𝟎 are called the coefficients of the polynomial 
o The number  𝒂𝒂𝟎𝟎 is called the constant coefficient or constant term 
o The number 𝒂𝒂𝒏𝒏 , the coefficient of the highest power, is the leading coefficient 
o The term 𝒂𝒂𝒏𝒏𝒙𝒙𝒏𝒏 is the leading term 
o  𝒑𝒑(𝒙𝒙) = 𝒂𝒂𝟎𝟎 is a polynomial of degree 0 
o If 𝒑𝒑(𝒙𝒙) = 𝟎𝟎, we say P has no degree 

Example 3.1.1 Page 235 reading: Which of the following functions are polynomials/ 

Example 1:   Which of the following is a polynomial?  If an expression is a polynomial, name its 
degree, and tell the variable that the polynomial is in. 

a)  𝒇𝒇(𝒙𝒙)  =  𝒙𝒙𝟑𝟑  −  𝟐𝟐𝟐𝟐² −  𝟑𝟑𝟑𝟑 −  𝟒𝟒     
b)  𝒑𝒑(𝒚𝒚)  =  𝟑𝟑𝟑𝟑² +  𝟐𝟐𝟐𝟐 +  𝟏𝟏     
c)  𝒉𝒉(𝒙𝒙)  =  𝒙𝒙𝟑𝟑 +  𝟐𝟐√𝒙𝒙  +  𝟏𝟏   

d) 𝒇𝒇(𝒙𝒙) = √𝒙𝒙𝟐𝟐𝟑𝟑       
e)  𝒇𝒇(𝒛𝒛)  =  𝒛𝒛−𝟏𝟏   +  𝟐𝟐   

Example 2: 𝒑𝒑(𝒙𝒙) = −𝟐𝟐 𝒙𝒙𝟓𝟓 + 𝒙𝒙𝟒𝟒 + 𝟑𝟑𝒙𝒙𝟑𝟑 − 𝟒𝟒𝒙𝒙𝟐𝟐 − 𝟏𝟏𝟏𝟏𝟏𝟏+ 𝟔𝟔 
a) Degree 
b) Leading term 
c) Leading coefficient 
d) Constant term 

Example 3.1.2 Page 237 Reading 

Example 3: Give examples of polynomial function of 
a) degree 0 
b) degree 1 
c) degree 2 
d) degree 33 
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Example 3.1.3 Page 338: An open box will be made by cutting out congruent squares from each corner 

of a 3ft by 8ft piece of cardboard and then folding up the sides.  Let x denote the length of the side of the 

square which is removed from each corner.  

a) Find the volume V of the box as a function of x. Include appropriate applied domain 

b) Using graphing calculator graph 𝑦𝑦 = V(𝑥𝑥) on the domain from 1) and approximate the 

maximum volume to two decimal places. What is the maximum volume? 

Graphs of Basic Polynomials 

The simplest polynomial functions are the monomials 𝒑𝒑(𝒙𝒙) = 𝒂𝒂𝒙𝒙𝒏𝒏,𝒂𝒂 ≠ 𝟎𝟎 

Example 4: Using graphing utilities sketch the graph of 𝒚𝒚 = 𝒂𝒂𝒂𝒂𝒏𝒏 , for 𝒏𝒏 = 𝟏𝟏,𝟐𝟐,𝟑𝟑,𝟒𝟒, 5 and so on and 
deduce some general properties of the graphs of  𝒚𝒚 = 𝒂𝒂𝒙𝒙𝒏𝒏 
 
Recall: The coefficient 𝒂𝒂 in 𝒚𝒚 = 𝒂𝒂𝒙𝒙𝒏𝒏, for 𝒂𝒂 > 𝟎𝟎 either stretches or shrinks the graph vertically.  
If 𝒂𝒂 < 𝟎𝟎 the graph of 𝒚𝒚 = 𝒂𝒂𝒙𝒙𝒏𝒏 is a reflection of 𝒚𝒚 = |𝒂𝒂|𝒙𝒙𝒏𝒏  across the x-axis. Therefore, we consider 
graphs of 𝒚𝒚 = 𝒂𝒂𝒙𝒙𝒏𝒏 for the cases where 𝒂𝒂 = ±𝟏𝟏. 𝐓𝐓𝐓𝐓𝐓𝐓 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝒊𝒊) 𝒏𝒏 − 𝒐𝒐𝒐𝒐𝒐𝒐 𝒂𝒂𝒂𝒂𝒂𝒂 𝒊𝒊𝒊𝒊) 𝒏𝒏 − 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆  

i) 𝒏𝒏 − 𝒐𝒐𝒐𝒐𝒐𝒐;  𝒏𝒏 = 𝟏𝟏,𝟑𝟑,𝟓𝟓,𝟕𝟕… 

a)  𝒂𝒂 > 𝟎𝟎  End behaviour: DOWN, UP  b) 𝒂𝒂 < 𝟎𝟎 End behaviour: UP, DOWN 

 

 

 

 

 

 

 

 

  

𝒚𝒚 = 𝒙𝒙𝒏𝒏  
𝒏𝒏 = 𝟏𝟏,𝟑𝟑,𝟓𝟓,𝟕𝟕 

𝒚𝒚 = −𝒙𝒙𝒏𝒏 , 
 𝒏𝒏 = 𝟏𝟏,𝟑𝟑,𝟓𝟓,𝟕𝟕 

3 
 



UNG Math 1111 Note 
ii) 𝒏𝒏 − 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆;  𝒏𝒏 = 𝟐𝟐,𝟒𝟒,𝟔𝟔, 𝟖𝟖…  

a) 𝒂𝒂 > 𝟎𝟎 End behaviour: UP, UP     b) 𝒂𝒂 < 𝟎𝟎 End behaviour: DOWN, DOWN 
 

 

 

 

 

 

 

 

 

 

 

 
Let P be a polynomial function of degree n. 

1. The domain of  P (any polynomial function) is the set of all real numbers 

2. P is continuous for all real numbers, so there are no breaks, holes, or jumps in the graph.  

3. The graph of P is a smooth curve with rounded corners and no sharp corners or cusps. 

4. The graph of P has at most n x-intercepts or n-zeroes. 

5. The graph of P has at most n – 1 turning points. 

6. The graph of P has four types of end behaviours 

 

Example 5: Sketch the graph of the following functions using graphing utilities and find their end 

behavior, number of zeros and turning points  

a) 𝒇𝒇(𝒙𝒙) =  𝒙𝒙𝟑𝟑 −  𝟐𝟐𝒙𝒙𝟐𝟐 −  𝟑𝟑𝟑𝟑 + 𝟐𝟐 

b) 𝒇𝒇(𝒙𝒙) = −𝒙𝒙𝟑𝟑 − 𝟐𝟐𝒙𝒙𝟐𝟐 + 𝟑𝟑𝟑𝟑 + 𝟐𝟐  

c) 𝒇𝒇(𝒙𝒙) = −𝒙𝒙𝟒𝟒 + 𝟒𝟒𝒙𝒙𝟐𝟐 − 𝟏𝟏 

d) 𝒇𝒇(𝒙𝒙) = 𝒙𝒙𝟒𝟒 − 𝟒𝟒𝒙𝒙𝟐𝟐 + 𝟏𝟏 

e) 𝑷𝑷(𝒙𝒙) = 𝒙𝒙𝟐𝟐(𝒙𝒙 + 𝟐𝟐)(𝒙𝒙 + 𝟏𝟏)(𝒙𝒙 − 𝟏𝟏)(𝒙𝒙 − 𝟐𝟐)  

  

𝒚𝒚 = 𝒙𝒙𝒏𝒏 ,𝒏𝒏 = 𝟐𝟐,𝟒𝟒,𝟔𝟔 𝒚𝒚 = −𝒙𝒙𝒏𝒏 ,𝒏𝒏 = 𝟐𝟐,𝟒𝟒,𝟔𝟔 
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Example 6: Each of the following graphs cannot be a graph of a polynomial function; Why?. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Let 𝒑𝒑(𝒙𝒙) =  𝒂𝒂𝒏𝒏𝒙𝒙𝒏𝒏 + 𝒂𝒂𝒏𝒏−𝟏𝟏𝒙𝒙𝒏𝒏−𝟏𝟏 + ⋯+ 𝒂𝒂𝟏𝟏𝒙𝒙+ 𝒂𝒂𝟎𝟎 be a polynomial function of degree n 

Table 1 shows End Behaviors for the graphs of polynomial functions of Degree n and 
Leading Coefficient 𝒂𝒂𝒏𝒏 
 

Leading Coefficient / Degree End Behavior 

𝒂𝒂𝒏𝒏 > 𝟎𝟎 
n even 

   both ends up     (up, up) 

𝒂𝒂𝒏𝒏 < 𝟎𝟎 
n even 

   both ends down     (down, down) 

𝒂𝒂𝒏𝒏 > 𝟎𝟎 
n odd 

   left down, right up    (down, up) 

𝒂𝒂𝒏𝒏 < 𝟎𝟎 
n odd 

   left up, right down    (up, down) 

Table 1 

A) 

D) 
C) 

B) 
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𝒚𝒚 = 𝟐𝟐𝒙𝒙𝟑𝟑 − 𝟐𝟐𝟐𝟐 + 𝟏𝟏
𝟖𝟖
  

𝒂𝒂𝒏𝒏 > 𝟎𝟎;  Left Down, Right UP 
𝒚𝒚 = −𝒙𝒙𝟑𝟑 + 𝟒𝟒𝒙𝒙𝟐𝟐 − 𝟐𝟐𝟐𝟐 − 𝟐𝟐  
𝒂𝒂𝒏𝒏 < 𝟎𝟎;  Left UP, Right Down 

Example 7: Classifying Polynomials by Their Graphs 

i. Even Degree 
 

 

 

 

 

 

 

 

 

 

ii. Odd Degree 
 

 
 
 
 
 

𝒚𝒚 = 𝒙𝒙𝟒𝟒 − 𝟐𝟐𝒙𝒙𝟐𝟐  
𝒂𝒂𝒏𝒏 > 𝟎𝟎, opens up or up, up 

𝒚𝒚 = −𝟏𝟏
𝟒𝟒
𝒙𝒙𝟒𝟒 + 𝟐𝟐𝒙𝒙𝟐𝟐 − 𝟏𝟏

𝟐𝟐
𝒙𝒙 − 𝟏𝟏  

𝒂𝒂𝒏𝒏 < 𝟎𝟎, opens down or down, down 
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Example 8: Determine the leading term, the leading coefficient, the degree of the polynomial, and the 

end behavior of the graph. 

a)   𝑓𝑓(𝑥𝑥) = 2𝑥𝑥3 + 3𝑥𝑥2 − 5𝑥𝑥 + 4                      b) 𝑓𝑓(𝑥𝑥) = −𝑥𝑥4 + 2𝑥𝑥3 + 3           

Ans. 1) leading term = 2x3    Ans. 1) Leading term = – x4 

    2)  Leading coeff. = 2     2) Leading coeff.  =  –1  

    3) Degree = 3      3) degree = 4    

   4)  End Behavior down, up     4) End Behavior:  down, down 

c) 𝑓𝑓(𝑥𝑥) = −𝑥𝑥5 + 3𝑥𝑥3 + 7                                d) 𝑓𝑓(𝑥𝑥) = 2𝑥𝑥2 + 3𝑥𝑥 + 2  

Example: Name the degree, the leading coefficient, and the constant term of   

 𝒉𝒉(𝒙𝒙)  =  (𝟓𝟓𝟓𝟓 +  𝟏𝟏)(𝟑𝟑𝟑𝟑 −  𝟏𝟏)(𝟐𝟐𝟐𝟐 +  𝟓𝟓)³ 

Solution:   
If we were to multiply out, then the degree of the product would be the sum of the degrees of each 
factor, thus the degree of 𝒉𝒉(𝒙𝒙) = 𝟏𝟏 +  𝟏𝟏 +  𝟑𝟑 =  𝟓𝟓.    
Note: ℎ(𝑥𝑥) = (5𝑥𝑥 +  1)(3𝑥𝑥 −  1)(2𝑥𝑥 +  5)³ =  (5𝑥𝑥 +  1)(3𝑥𝑥 −  1)(2𝑥𝑥 +  5)(2𝑥𝑥 +  5)(2𝑥𝑥 +  5). 

The leading coefficient would be the product of all the leading coefficients:  5· 3· 2³ = 15· 8 = 120. 

And the constant term would be the product of all the constant terms:  1· (−1)· 5³ = −1· 125 = −125. 
 
Example 9: Find the degree, the leading coefficient, and the constant term. 

a)  𝒇𝒇(𝒙𝒙)  =  𝟔𝟔𝒙𝒙𝟑𝟑 +  𝟕𝟕𝟕𝟕² −  𝟑𝟑𝟑𝟑 +  𝟏𝟏 

b) 𝒇𝒇(𝒙𝒙)  =  (𝒙𝒙 −  𝟏𝟏)(𝒙𝒙² +  𝒙𝒙 −  𝟔𝟔)  

b)  𝒈𝒈(𝒙𝒙)  =  (𝒙𝒙 +  𝟐𝟐)𝟐𝟐(𝒙𝒙 −  𝟑𝟑)𝟑𝟑(𝟐𝟐𝟐𝟐 +  𝟏𝟏)𝟒𝟒 

c)  𝒉𝒉(𝒙𝒙)  =  𝒙𝒙(𝒙𝒙 −  𝟐𝟐)𝟓𝟓(𝒙𝒙 +  𝟑𝟑)² 

d)  𝒇𝒇(𝒙𝒙)  =  𝟓𝟓𝟓𝟓³ −  𝟒𝟒𝟒𝟒² +  𝟕𝟕𝟕𝟕 −  𝟖𝟖  
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Example 10: Referring to the graphs below: 

i. Identify as even or odd degree polynomials  

ii. Determine possible degrees and signs of leading coefficients  

iii. Find possible zeros of the polynomials.  

 

 
 
 
 
 
 
 
 
 
 
 

The zeroes of a polynomial 𝒚𝒚 = 𝒑𝒑(𝒙𝒙)  and Multiplicity 

Zeroes of a polynomial 
Recall: If  𝒑𝒑(𝒓𝒓)  =  𝟎𝟎 for a number r, then r is called the zero of p, to find the zeros of p: 

 Set 𝒑𝒑(𝒙𝒙)  =  𝟎𝟎 and solve for x.  

 Factor, if it is possible to factor, the polynomial p  

Example 11: Find the zeros of 𝒇𝒇(𝒙𝒙) = 𝒙𝒙𝟑𝟑 + 𝟐𝟐𝒙𝒙𝟐𝟐 − 𝟓𝟓𝟓𝟓 − 𝟔𝟔  . 

Factor 𝒇𝒇(𝒙𝒙) and set it equal to 0 and solve for x. 

𝒙𝒙𝟑𝟑 + 𝟐𝟐𝒙𝒙𝟐𝟐 − 𝟓𝟓𝟓𝟓 − 𝟔𝟔 = (𝑥𝑥 +  3)(𝑥𝑥 +  1)�𝑥𝑥 –  2�  

 𝑥𝑥 = −3,−1, 𝑎𝑎𝑎𝑎𝑎𝑎 2, are the zeros of the function.   

Note that:  𝑓𝑓(−3) =  0, 𝑓𝑓(−1) =  0,𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓(2)  =  0 

Multiplicity 
Definition (Multiplicity)  
The multiplicity of a zero is the number of times that zero occurs.  For the polynomial 
function  𝒇𝒇(𝒙𝒙) = (𝒙𝒙 − 𝒄𝒄)𝒌𝒌, c is a zero of the function with multiplicity k. 
 If k is odd, then the graph crosses the x-axis at (c, 0) 

 If k is even, then the graph is tangent to the x-axis at (c, 0)  (touches the x-axis but does 

not cross it) 

  

a) 
b) 
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Theorem: Suppose P is a polynomial function and 𝒙𝒙 = 𝒄𝒄 is a zero of multiplicity m. Then: 

 If m is even, then the graph of P is tangent to the x-axis at (c, 0)  (touches and re-bounce 

from  the x-axis at (c, 0)) 

 If m is odd, then the graph of P crosses the x-axis at (c, 0) 

Example 14:  For each of the following find the zeroes, state the multiplicity, and sketch the graph 

a) 𝒇𝒇(𝒙𝒙) = 𝟓𝟓𝟓𝟓(𝒙𝒙 − 𝟐𝟐)𝟑𝟑(𝒙𝒙 + 𝟏𝟏)                           

Solution:   𝒙𝒙 =  𝟐𝟐 is a zero with multiplicity 3; (graph crosses the  at 𝑥𝑥 = 2) 
 𝒙𝒙 = −𝟏𝟏 is a zero with multiplicity 1; (graph crosses the  at 𝑥𝑥 = −1) 
𝒙𝒙 = 𝟎𝟎 is a zero with multiplicity 1; (graph crosses the  at 𝑥𝑥 = 0) 

b) 𝒇𝒇(𝒙𝒙) = −𝒙𝒙𝟐𝟐(𝒙𝒙 − 𝟏𝟏)𝟑𝟑(𝒙𝒙 + 𝟐𝟐)𝟒𝟒. 

Solution:   𝒙𝒙 = − 𝟐𝟐 is a zero with multiplicity 4; (graph re-bounces at 𝑥𝑥 = −2) 
 𝒙𝒙 = 𝟏𝟏 is a zero with multiplicity 3; (graph crosses the  at 𝑥𝑥 = 1)  
𝒙𝒙 = 𝟎𝟎 is a zero with multiplicity 2; (graph re-bounces at 𝑥𝑥 = 0) 

 
Example 3.1.6 page 245:  Reading 
 
Important ideas for sketching graphs of polynomials: 

• Zeros and their multiplicity 

• Degree and leading coefficient  

• End Behavior: The leading term  and the degree tells us about the end behavior 

• Intercepts: x and y - intercepts 

• Symmetries: If any 

• Test Points: Make a table of values for the polynomial. Include test points to determine 

whether the graph of the polynomial lies above or below the x-axis on the intervals 

determined by the zeros. Include the y-intercept on the table. 

• Graph: Plot the intercept and other points you found on the table. Sketch a smooth curve 

that passes through these points and exhibits the required end behavior. 
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Example 12: Choose the correct graph of  𝒉𝒉(𝒙𝒙) = −𝒙𝒙(𝒙𝒙 − 𝟒𝟒)(𝒙𝒙 + 𝟏𝟏)(𝒙𝒙 − 𝟓𝟓) 
 

 
 
Example 13: Choose the correct graph of  𝒇𝒇(𝒙𝒙) = 𝒙𝒙𝟓𝟓 + 𝟑𝟑𝒙𝒙𝟐𝟐  

 
Example 15: Sketch the graph of the following polynomials 

a) 𝑓𝑓(𝑥𝑥)  =  6𝑥𝑥3  +  7𝑥𝑥² −  3𝑥𝑥 +  1 

b) 𝑓𝑓(𝑥𝑥)  =  (𝑥𝑥 −  1)(𝑥𝑥² +  𝑥𝑥 −  6) 

c) 𝑔𝑔(𝑥𝑥)  =  𝑥𝑥(𝑥𝑥 +  2)(𝑥𝑥 −  3)2(2𝑥𝑥 +  1) 

d) ℎ(𝑥𝑥) =  −(𝑥𝑥 − 1)(𝑥𝑥 − 3)(𝑥𝑥 + 2)(𝑥𝑥 + 1) 

 
OER 1: West Texas A&M University Tutorial 35:  Graphs of Polynomial Functions 

Practice Problems from the Text 
Page 246, Exercises 3.1.1: #1 – 32 (odd numbers)  
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Polynomial Divisions (Page 257) 

Long Division and Synthetic Division  
 
Long Division 

The Division Algorithm 
If 𝑷𝑷(𝒙𝒙) and 𝑫𝑫(𝒙𝒙) are polynomials, with 𝑫𝑫(𝒙𝒙) ≠ 𝟎𝟎, then there are unique polynomials 

 𝑸𝑸(𝒙𝒙) and 𝑹𝑹(𝒙𝒙),  where 𝑹𝑹(𝒙𝒙) is either 0 or of degree less than the degree of 𝑫𝑫(𝒙𝒙), such that  

  𝑷𝑷(𝒙𝒙) = 𝑫𝑫(𝒙𝒙) ∙ 𝑸𝑸(𝒙𝒙) + 𝑹𝑹(𝒙𝒙)  

The polynomials 𝑷𝑷(𝒙𝒙) and 𝑫𝑫(𝒙𝒙)  are called the Dividend and divisor respectively 

𝑸𝑸(𝒙𝒙) is called the quotient  

𝑹𝑹(𝒙𝒙) is called the remainder 

For Example: If we divide 𝟔𝟔𝒙𝒙𝟐𝟐 − 𝟐𝟐𝟐𝟐𝟐𝟐 + 𝟏𝟏𝟏𝟏 𝑏𝑏𝑏𝑏 𝒙𝒙 − 𝟒𝟒 we get 

  𝟔𝟔𝒙𝒙𝟐𝟐 − 𝟐𝟐𝟐𝟐𝟐𝟐 + 𝟏𝟏𝟏𝟏 = (𝒙𝒙 − 𝟒𝟒)(𝟔𝟔𝟔𝟔 − 𝟐𝟐) + 𝟒𝟒 

In the Division Algorithm Format: 

𝑷𝑷(𝒙𝒙) = 𝟔𝟔𝒙𝒙𝟐𝟐 − 𝟐𝟐𝟐𝟐𝟐𝟐 + 𝟏𝟏𝟏𝟏 is the Dividend; 

 𝑫𝑫(𝒙𝒙) = 𝒙𝒙 − 𝟒𝟒 is the Divisor;  

𝑸𝑸(𝒙𝒙) = 𝟔𝟔𝟔𝟔 − 𝟐𝟐 is the Quotient and  

𝑹𝑹(𝒙𝒙) = 𝟒𝟒 is the Remainder 

 

Example 1: Divide (𝒙𝒙𝟒𝟒 –  𝟐𝟐𝒙𝒙 𝟐𝟐 +  𝒙𝒙 –𝟐𝟐)  ÷  (𝒙𝒙𝟐𝟐  +  𝒙𝒙 –  𝟒𝟒) 

Solution: By Division Algorithm:  
𝒙𝒙𝟒𝟒 –  𝟐𝟐𝒙𝒙 𝟐𝟐 +  𝒙𝒙 –𝟐𝟐 = (𝒙𝒙𝟐𝟐  +  𝒙𝒙 –  𝟒𝟒) ∙ 𝑸𝑸(𝒙𝒙) + 𝑹𝑹(𝒙𝒙)  

Where 𝑸𝑸(𝒙𝒙)and 𝑹𝑹(𝒙𝒙) are polynomials to be determined using Polynomial long Division 

In dividing polynomials using Long Division: 
First we must insert zero placeholders for missing terms and rewrite the division as: 

(𝒙𝒙𝟒𝟒 + 𝟎𝟎𝒙𝒙𝟑𝟑–  𝟐𝟐𝒙𝒙𝟐𝟐 +  𝒙𝒙 –𝟐𝟐)  ÷  (𝒙𝒙𝟐𝟐  +  𝒙𝒙 –  𝟒𝟒)  

Next, set up the polynomial division as a standard division problem and repeat the steps Divide, 
Multiply, Subtract, Carry Down over and over until the divisor no longer may be divided into the result 
at the bottom. 
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Step 1: We eliminate x4 from the dividend, to do so we need to multiply the divisor by x2 and subtract 

the product from the dividend and bring down 𝒙𝒙 to get a new dividend, −𝒙𝒙𝟑𝟑  +  𝟐𝟐𝒙𝒙 𝟐𝟐 +  𝒙𝒙 

Step 2: Next we eliminate−𝒙𝒙𝟑𝟑  from the new dividend, to do so multiply the divisor by −𝒙𝒙  and 
subtract the product from −𝒙𝒙𝟑𝟑  +  𝟐𝟐𝒙𝒙 𝟐𝟐 +  𝒙𝒙 and bring down − 𝟐𝟐  , which gives a second new 
dividend 𝟑𝟑𝒙𝒙𝟐𝟐 − 𝟑𝟑𝟑𝟑 − 𝟐𝟐.  Repeat this process for the new dividend, until we get a dividend of 
degree smaller than the divisor, 𝒙𝒙𝟐𝟐  +  𝒙𝒙 –  𝟒𝟒  

                           

3

106

1233
2330

4
20

4
2204

2

2

2

23

23

234

2342
+−

+−

−+

−−+

+−−

++−

−+

−+−+−+
xx

x

xx
xx

xxx
xxx

xxx
xxxxxx

 

 
Since, – 6x + 10 is of smaller degree than  𝒙𝒙𝟐𝟐  +  𝒙𝒙 –  𝟒𝟒, we stop the process here. 
The polynomial 𝒙𝒙𝟐𝟐 − 𝒙𝒙 + 𝟑𝟑 is Quotient, and –𝟔𝟔𝟔𝟔 + 𝟏𝟏𝟏𝟏 is reminder; and so, 

𝒙𝒙𝟒𝟒 –  𝟐𝟐𝒙𝒙 𝟐𝟐 +  𝒙𝒙 –𝟐𝟐 = (𝒙𝒙𝟐𝟐  +  𝒙𝒙 –  𝟒𝟒) ∙ (𝒙𝒙𝟐𝟐 − 𝒙𝒙 + 𝟑𝟑) + (–  𝟔𝟔𝟔𝟔 +  𝟏𝟏𝟏𝟏) 

Example 2: Using Long Division, find the quotient and the remainder of each of the following. 

 a)  𝑓𝑓(𝑥𝑥) = 3𝑥𝑥3+2𝑥𝑥−4
𝑥𝑥2−4

       

b)  𝑓𝑓(𝑥𝑥) = 5𝑥𝑥4+3𝑥𝑥2+2𝑥𝑥−8
2𝑥𝑥2+2𝑥𝑥−8

     

c)  𝑓𝑓(𝑥𝑥) = 𝑥𝑥4+ 2𝑥𝑥3− 6𝑥𝑥2− 2
𝑥𝑥 − 1

  

OER: West Texas A&M University Tutorial 36:   Long Division  

 

Homework Practice Problems from the Text 
Exercise 3.2.1 Page 265 #1 – 6  
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http://www.wtamu.edu/academic/anns/mps/math/mathlab/col_algebra/col_alg_tut36_longdiv.htm
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Synthetic Division - The Shortcut for Dividing by (x – c) 

When dividing a polynomial 𝒇𝒇(𝒙𝒙) by a linear factor (𝒙𝒙− 𝒄𝒄), we can use a shorthand notation saving 
steps and space.  
 
Procedure for Synthetic Division; we proceed with example 
 
Example 3: Divided 𝒇𝒇(𝒙𝒙)  =  𝟑𝟑𝒙𝒙𝟑𝟑  +  𝟐𝟐𝟐𝟐 –  𝟏𝟏 by (𝒙𝒙 –  𝟒𝟒).  

1. Insert zero place holder for the missing term: 𝒇𝒇(𝒙𝒙) =  𝟑𝟑𝒙𝒙𝟑𝟑 + 𝟎𝟎𝒙𝒙𝟐𝟐 +  𝟐𝟐𝟐𝟐 –  𝟏𝟏  

2. Write the value of “c” and the coefficients of 𝒇𝒇(𝒙𝒙) in a row. In Example 3 c = 4, and the 

coefficients are 3, 0, 2, and -1. 

 
 
3. Carry down the first coefficient. In this case carry down the 3.  

       
 
4. Multiply this carried down coefficient by the value of c.  

In this case, multiply 3 • 4 = 12. Place this result in the next column.   

 
 

5. Add the column entries and place result at bottom. In this case you add 0 + 12 to get 12.  
Multiply this addition result by “c” and place in next column. In this case you multiply  
12 • 4 = 48  

 
 

6. Repeat Step 4 for all columns.  In this example, you get 

 
 

7. The bottom row of numbers reveals the answer along with the remainder. In this case, the 
numbers 3  12  50  199 indicate an answer of   
3x2 + 12x + 50, with remainder 199   or   3x2 + 12x + 50  +  199/(x – 4)  
 

Note: The answer will always have degree one less than the dividend.  
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Example 4: Using synthetic division, find the quotient and remainder 

a) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥4 + 2𝑥𝑥3 − 6𝑥𝑥2 − 2
𝑥𝑥 − 1

 
b) 𝑥𝑥5 + 32 ÷ 𝑥𝑥 + 2  

Example 3.2.1 Page 261: Reading 
 
Homework Practice Problems from the Text 
Exercise 3.2.1 Page 265 #7 – 20  

 
The Factor Theorem:  

For a polynomial 𝒇𝒇(𝒙𝒙) , if  𝒇𝒇(𝒄𝒄) = 𝟎𝟎, then  𝒙𝒙 − 𝒄𝒄   is a factor of   𝒇𝒇(𝒙𝒙).  

Note:  𝒙𝒙 − 𝒄𝒄   is a factor of   𝒇𝒇(𝒙𝒙) means, the remainder when 𝒇𝒇(𝒙𝒙) divided by 𝒙𝒙 − 𝒄𝒄 is 0  

Example 5: Let  𝒇𝒇(𝒙𝒙) = 𝒙𝒙𝟑𝟑 − 𝟐𝟐𝒙𝒙𝟐𝟐.  
 𝒇𝒇(𝟐𝟐) = 𝟎𝟎, so by the Factor Theorem,  𝒙𝒙 − 𝟐𝟐 is a factor of 𝒇𝒇(𝒙𝒙) 

Example 6: Let 𝒇𝒇(𝒙𝒙) = 𝒙𝒙𝟑𝟑 + 𝟐𝟐𝒙𝒙𝟐𝟐 − 𝟓𝟓𝟓𝟓 − 𝟔𝟔 

a) Use long division to determine whether 𝑥𝑥 + 3 and 𝑥𝑥 − 3 are factors of 𝒇𝒇(𝒙𝒙).  

b) Use The Factor Theorem to determine whether 𝒙𝒙 + 𝟑𝟑 and 𝒙𝒙 − 𝟑𝟑 are factors of 𝒇𝒇(𝒙𝒙). 

c) Use synthetic division to determine whether 𝑥𝑥 + 3 and 𝑥𝑥 − 3 are factors of 𝒇𝒇(𝒙𝒙). 
 
The Remainder Theorem:   

If 𝒇𝒇(𝒙𝒙) = (𝒙𝒙 − 𝒄𝒄)𝑸𝑸(𝒙𝒙) + 𝑹𝑹, then 𝒇𝒇(𝒄𝒄) = 𝑹𝑹. That is, the remainder when dividing 

the polynomial 𝒇𝒇(𝒙𝒙) by 𝒙𝒙 − 𝒄𝒄 is the same as the value of the function evaluated at 

𝒙𝒙 = 𝒄𝒄. 

Example 7: Using the Remainder Theorem, find the remainder when 𝒇𝒇(𝒙𝒙) = 𝒙𝒙𝟑𝟑 + 𝟐𝟐𝒙𝒙𝟐𝟐 − 𝟓𝟓𝟓𝟓 − 𝟔𝟔 is 

divided by: 

a) 𝒙𝒙 + 𝟐𝟐 

b) 𝒙𝒙 − 𝟏𝟏 
Example 3.2.2 Page 362: Reading 
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Example 8: Decide whether the numbers −𝟑𝟑, 𝟐𝟐,  are zeros of the polynomial        

𝑓𝑓(𝑥𝑥) = 3𝑥𝑥3 + 5𝑥𝑥2 − 6𝑥𝑥 + 18 ; use both Synthetic Division and the Remainder Theorem 

Example 9: Factor the polynomial 𝒇𝒇(𝒙𝒙) = 𝒙𝒙𝟑𝟑 + 𝟓𝟓𝒙𝒙𝟐𝟐 − 𝟐𝟐𝟐𝟐 − 𝟐𝟐𝟐𝟐 and solve the equation 𝒇𝒇(𝒙𝒙) = 𝟎𝟎. 
Solution:  

1) First, list all integral factors of –𝟐𝟐𝟐𝟐: which are ±𝟏𝟏, ±𝟐𝟐, ±𝟑𝟑, ±𝟒𝟒, ±𝟔𝟔, ±𝟖𝟖, ±𝟏𝟏𝟏𝟏, ±𝟐𝟐𝟐𝟐  

2) Next, check if any of these factor is a zero of 𝑓𝑓(𝑥𝑥) 

Check for:  𝒇𝒇(±𝟏𝟏) =?, 𝒇𝒇(±𝟐𝟐) =?, 𝒆𝒆𝒆𝒆𝒆𝒆. 

3) Finally using the result of 2) and division of polynomials factor 𝑓𝑓(𝑥𝑥) 

Example 10: Factor the polynomial 𝒇𝒇(𝒙𝒙) = 𝒙𝒙𝟒𝟒 + 𝟐𝟐𝒙𝒙𝟑𝟑 − 𝟐𝟐𝟐𝟐𝒙𝒙𝟐𝟐 − 𝟓𝟓𝟓𝟓𝟓𝟓 completely 

Example 11: Factor the polynomial 𝒇𝒇(𝒙𝒙) = 𝒙𝒙𝟒𝟒 − 𝟖𝟖𝒙𝒙𝟒𝟒 − 𝟑𝟑𝟑𝟑 completely 

Example 12: Factor the polynomial 𝒇𝒇(𝒙𝒙) = 𝒙𝒙𝟒𝟒 − 𝟓𝟓𝒙𝒙𝟑𝟑 + 𝟐𝟐𝟐𝟐𝟐𝟐 − 𝟏𝟏𝟏𝟏 completely 

Example 12: Solve 𝒙𝒙𝟑𝟑 + 𝟒𝟒𝒙𝒙𝟐𝟐 + 𝟐𝟐𝟐𝟐𝟐𝟐 − 𝟏𝟏𝟏𝟏𝟏𝟏 = 𝟎𝟎 

 
 
OER: West Texas A&M University  

Tutorial 37:   Synthetic Division and the Remainder and Factor Theorems 
 
OER: West Texas A&M University on zeros of polynomial functions 

Tutorial 38:   Zeros of Polynomial Functions, Part I   
Tutorial 39:   Zeros of Polynomial Functions, Part II 

 
 
 
Homework Practice Problems from the Text 

Exercise 3.2.1 Page 265 #21 – 46 (odd numbers) 

Examples YouTube videos 
 Polynomial Long Division 1: https://www.youtube.com/watch?v=4u8_AMacu-Y  
 Polynomial long Division 2: https://www.youtube.com/watch?v=FXgV9ySNusc  
 Synthetic Division 1: https://www.youtube.com/watch?v=1byR9UEQJN0  
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http://www.wtamu.edu/academic/anns/mps/math/mathlab/col_algebra/col_alg_tut37_syndiv.htm
http://www.wtamu.edu/academic/anns/mps/math/mathlab/col_algebra/col_alg_tut38_zero1.htm
http://www.wtamu.edu/academic/anns/mps/math/mathlab/col_algebra/col_alg_tut39_zero2.htm
https://www.youtube.com/watch?v=4u8_AMacu-Y
https://www.youtube.com/watch?v=FXgV9ySNusc
https://www.youtube.com/watch?v=1byR9UEQJN0

