University of North Georgia
 Department of Mathematics

Instructor: Berhanu Kidane

Course: College Algebra Math 1111

Text Book: For this course we use the free e - book by Stitz and Zeager with link:
http://www.stitz-zeager.com/szca07042013.pdf
Tutorials and Practice Exercises

- http://www.wtamu.edu/academic/anns/mps/math/mathlab/col algebra/index.htm
- http://www.mathwarehouse.com/algebra/
- http://www.ixl.com/math/algebra-2
- http://www.ixl.com/math/precalculus
- http://www.ltcconline.net/greenl/java/index.html

For more free supportive educational resources consult the syllabus

Chapter 3

Polynomial Functions (page 235)

3.1 Polynomial Functions and Their Graphs

Objectives: By the end of this section students should be able to:

- Identify polynomial Functions
- Graph basic polynomial functions
- Identify end behavior and leading term
- Use zeros in graphing polynomials
- Find local maximum and local minimum

Definition of a Polynomial Function

A polynomial function of degree \boldsymbol{n} is a function of the form $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$, where n is a non-negative integer and $a_{n} \neq 0$
o The numbers $\boldsymbol{a}_{\boldsymbol{n}}, \boldsymbol{a}_{\boldsymbol{n}-\mathbf{1}}, \ldots \boldsymbol{a}_{\mathbf{1}}, \boldsymbol{a}_{\mathbf{0}}$ are called the coefficients of the polynomial
o The number $\boldsymbol{a}_{\mathbf{0}}$ is called the constant coefficient or constant term
o The number $\boldsymbol{a}_{\boldsymbol{n}}$, the coefficient of the highest power, is the leading coefficient
o The term $a_{n} x^{n}$ is the leading term
o $\boldsymbol{p}(\boldsymbol{x})=\boldsymbol{a}_{\mathbf{0}}$ is a polynomial of degree $\mathbf{0}$
o If $\boldsymbol{p}(\boldsymbol{x})=\mathbf{0}$, we say \mathbf{P} has no degree

Example 3.1.1 Page 235 reading: Which of the following functions are polynomials/

Example 1: Which of the following is a polynomial? If an expression is a polynomial, name its degree, and tell the variable that the polynomial is in.
a) $f(x)=x^{3}-2 x^{2}-3 x-4$
b) $p(y)=3 y^{2}+2 y+1$
c) $h(x)=x 3+2 \sqrt{x}+1$
d) $f(x)=\sqrt[3]{x^{2}}$
e) $f(z)=z^{-1}+2$

Example 2: $p(x)=-2 x^{5}+x^{4}+3 x^{3}-4 x^{2}-12 x+6$
a) Degree
b) Leading term
c) Leading coefficient
d) Constant term

Example 3.1.2 Page 237 Reading
Example 3: Give examples of polynomial function of
a) degree 0
b) degree 1
c) degree 2
d) degree 33

Example 3.1.3 Page 338: An open box will be made by cutting out congruent squares from each corner of a 3 ft by 8 ft piece of cardboard and then folding up the sides. Let x denote the length of the side of the square which is removed from each corner.
a) Find the volume V of the box as a function of x. Include appropriate applied domain
b) Using graphing calculator graph $y=\mathrm{V}(x)$ on the domain from 1) and approximate the maximum volume to two decimal places. What is the maximum volume?

Graphs of Basic Polynomials

The simplest polynomial functions are the monomials $\boldsymbol{p}(\boldsymbol{x})=\boldsymbol{a} \boldsymbol{x}^{\boldsymbol{n}}, \boldsymbol{a} \neq \mathbf{0}$
Example 4: Using graphing utilities sketch the graph of $\boldsymbol{y}=\boldsymbol{a} \boldsymbol{x}^{\boldsymbol{n}}$, for $\boldsymbol{n}=1,2,3,4,5$ and so on and deduce some general properties of the graphs of $\boldsymbol{y}=\boldsymbol{a} \boldsymbol{x}^{\boldsymbol{n}}$

Recall: The coefficient \boldsymbol{a} in $\boldsymbol{y}=\boldsymbol{a} \boldsymbol{x}^{\boldsymbol{n}}$, for $\boldsymbol{a}>\mathbf{0}$ either stretches or shrinks the graph vertically. If $a<\mathbf{0}$ the graph of $\boldsymbol{y}=a x^{\boldsymbol{n}}$ is a reflection of $\boldsymbol{y}=|\boldsymbol{a}| \boldsymbol{x}^{\boldsymbol{n}}$ across the x-axis. Therefore, we consider graphs of $y=a x^{n}$ for the cases where $a= \pm 1$. Two cases i) n - odd and ii) n - even
i) n-odd; $n=1,3,5,7 \ldots$
a) $a>0$ End behaviour: DOWN, UP

b) $a<0$ End behaviour: UP, DOWN

ii) n-even; $n=2,4,6,8 \ldots$
a) $a>0$ End behaviour: UP, UP

$$
\boldsymbol{y}=\boldsymbol{x}^{\boldsymbol{n}}, \boldsymbol{n}=2,4,6
$$

b) $a<0$ End behaviour: DOWN, DOWN

Let \mathbf{P} be a polynomial function of degree \mathbf{n}.

1. The domain of \mathbf{P} (any polynomial function) is the set of all real numbers
2. \mathbf{P} is continuous for all real numbers, so there are no breaks, holes, or jumps in the graph.
3. The graph of \mathbf{P} is a smooth curve with rounded corners and no sharp corners or cusps.
4. The graph of \mathbf{P} has at most $\boldsymbol{n} \boldsymbol{x}$-intercepts or \boldsymbol{n}-zeroes.
5. The graph of \mathbf{P} has at most $\mathbf{n}-\mathbf{1}$ turning points.
6. The graph of \mathbf{P} has four types of end behaviours

Example 5: Sketch the graph of the following functions using graphing utilities and find their end behavior, number of zeros and turning points
a) $f(x)=x^{3}-2 x^{2}-3 x+2$
b) $f(x)=-x^{3}-2 x^{2}+3 x+2$
c) $f(x)=-x^{4}+4 x^{2}-1$
d) $f(x)=x^{4}-4 x^{2}+1$
e) $P(x)=x^{2}(x+2)(x+1)(x-1)(x-2)$

Example 6: Each of the following graphs cannot be a graph of a polynomial function; Why?.

Let $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ be a polynomial function of degree n
Table 1 shows End Behaviors for the graphs of polynomial functions of Degree \boldsymbol{n} and Leading Coefficient $\boldsymbol{a}_{\boldsymbol{n}}$

Leading Coefficient / Degree	End Behavior
$a_{n}>0$ n even	both ends up (up, up)
$a_{n}<0$ n even	both ends down (down, down)
$a_{n}>0$ n odd	left down, right up (down, up)
$a_{n}<0$ n odd	left up, right down (up, down)

Table 1

Example 7: Classifying Polynomials by Their Graphs
i. Even Degree

$y=x^{4}-2 x^{2}$
$a_{n}>0$, opens up or up, up

$y=-\frac{1}{4} x^{4}+2 x^{2}-\frac{1}{2} x-1$ $a_{n}<0$, opens down or down, down

ii. Odd Degree

$$
y=2 x^{3}-2 x+\frac{1}{8}
$$

$a_{n}>0$; Left Down, Right UP

$y=-x^{3}+4 x^{2}-2 x-2$
$a_{\boldsymbol{n}}<0$; Left UP, Right Down

Example 8: Determine the leading term, the leading coefficient, the degree of the polynomial, and the end behavior of the graph.
a) $f(x)=2 x^{3}+3 x^{2}-5 x+4$
b) $f(x)=-x^{4}+2 x^{3}+3$

Ans. 1) leading term $=\mathbf{2} \mathbf{x}^{\mathbf{3}}$
2) Leading coeff. $=2$
3) Degree $=\mathbf{3}$
4) End Behavior down, up
c) $f(x)=-x^{5}+3 x^{3}+7$

Ans. 1) Leading term $=-\mathbf{x}^{4}$
2) Leading coeff. $=\mathbf{- 1}$
3) degree $=4$
4) End Behavior: down, down

Example: Name the degree, the leading coefficient, and the constant term of

$$
h(x)=(5 x+1)(3 x-1)(2 x+5)^{3}
$$

Solution:

If we were to multiply out, then the degree of the product would be the sum of the degrees of each factor, thus the degree of $\boldsymbol{h}(\boldsymbol{x})=\mathbf{1}+\mathbf{1}+\mathbf{3}=\mathbf{5}$.
Note: $h(x)=(5 x+1)(3 x-1)(2 x+5)^{3}=(5 x+1)(3 x-1)(2 x+5)(2 x+5)(2 x+5)$.
The leading coefficient would be the product of all the leading coefficients: $5 \cdot 3 \cdot 2^{3}=15 \cdot 8=120$.
And the constant term would be the product of all the constant terms: $1 \cdot(-1) \cdot 5^{3}=-1 \cdot 125=-125$.
Example 9: Find the degree, the leading coefficient, and the constant term.
a) $f(x)=6 x^{3}+7 x^{2}-3 x+1$
b) $f(x)=(x-1)\left(x^{2}+x-6\right)$
b) $g(x)=(x+2)^{2}(x-3)^{3}(2 x+1)^{4}$
c) $h(x)=x(x-2)^{5}(x+3)^{2}$
d) $f(x)=5 x^{3}-4 x^{2}+7 x-8$

Example 10: Referring to the graphs below:

i. Identify as even or odd degree polynomials
ii. Determine possible degrees and signs of leading coefficients
iii. Find possible zeros of the polynomials.

b)

The zeroes of a polynomial $\boldsymbol{y}=\boldsymbol{p}(\boldsymbol{x})$ and Multiplicity

Zeroes of a polynomial

Recall: If $\boldsymbol{p}(\boldsymbol{r})=\mathbf{0}$ for a number \boldsymbol{r}, then \boldsymbol{r} is called the zero of \boldsymbol{p}, to find the zeros of \boldsymbol{p} :

- Set $\boldsymbol{p}(\boldsymbol{x})=\mathbf{0}$ and solve for \boldsymbol{x}.
- Factor, if it is possible to factor, the polynomial \boldsymbol{p}

Example 11: Find the zeros of $f(x)=x^{3}+2 x^{2}-5 x-6$.
Factor $\boldsymbol{f}(\boldsymbol{x})$ and set it equal to $\mathbf{0}$ and solve for \mathbf{x}.

$$
x^{3}+2 x^{2}-5 x-6=(x+3)(x+1)(x-2)
$$

$x=-3,-1$, and 2 , are the zeros of the function.
Note that: $f(-3)=0, f(-1)=0$, and $f(2)=0$

Multiplicity

Definition (Multiplicity)
The multiplicity of a zero is the number of times that zero occurs. For the polynomial function $\boldsymbol{f}(\boldsymbol{x})=(\boldsymbol{x}-\boldsymbol{c})^{k}$, \boldsymbol{c} is a zero of the function with multiplicity k.

- If \mathbf{k} is odd, then the graph crosses the x -axis at ($\mathbf{c}, \mathbf{0}$)
- If \mathbf{k} is even, then the graph is tangent to the x -axis at ($\mathbf{c}, \mathbf{0}$) (touches the x -axis but does not cross it)

Theorem: Suppose \mathbf{P} is a polynomial function and $\boldsymbol{x}=\boldsymbol{c}$ is a zero of multiplicity m . Then:

- If \mathbf{m} is even, then the graph of \mathbf{P} is tangent to the \mathbf{x}-axis at ($\mathbf{c}, \mathbf{0}$) (touches and re-bounce from the x -axis at ($\mathbf{c}, \mathbf{0}$))
- If m is odd, then the graph of \mathbf{P} crosses the x-axis at ($\mathbf{c}, \mathbf{0}$)

Example 14: For each of the following find the zeroes, state the multiplicity, and sketch the graph
a) $f(x)=5 x(x-2)^{3}(x+1)$

Solution: $\boldsymbol{x}=\mathbf{2}$ is a zero with multiplicity 3; (graph crosses the at $x=2$)
$\boldsymbol{x}=\mathbf{- 1}$ is a zero with multiplicity $\mathbf{1 ;}$ (graph crosses the at $x=-1$)
$\boldsymbol{x}=\mathbf{0}$ is a zero with multiplicity 1 ; (graph crosses the at $x=0$)
b) $f(x)=-x^{2}(x-1)^{3}(x+2)^{4}$.

Solution: $\boldsymbol{x}=\mathbf{- 2}$ is a zero with multiplicity $\mathbf{4}$; (graph re-bounces at $x=-2$)
$\boldsymbol{x}=\mathbf{1}$ is a zero with multiplicity $\mathbf{3}$; (graph crosses the at $x=1$)
$\boldsymbol{x}=\mathbf{0}$ is a zero with multiplicity 2 ; (graph re-bounces at $x=0$)

Example 3.1.6 page 245: Reading

Important ideas for sketching graphs of polynomials:

- Zeros and their multiplicity
- Degree and leading coefficient
- End Behavior: The leading term and the degree tells us about the end behavior
- Intercepts: \mathbf{x} and \mathbf{y}-intercepts
- Symmetries: If any
- Test Points: Make a table of values for the polynomial. Include test points to determine whether the graph of the polynomial lies above or below the x-axis on the intervals determined by the zeros. Include the y-intercept on the table.
- Graph: Plot the intercept and other points you found on the table. Sketch a smooth curve that passes through these points and exhibits the required end behavior.

Example 12: Choose the correct graph of $h(x)=-x(x-4)(x+1)(x-5)$
○.
○
B.
Oc
C.
OD.

Example 13: Choose the correct graph of $f(x)=x^{5}+3 x^{2}$
A.

○
C.
○D.

Example 15: Sketch the graph of the following polynomials
a) $f(x)=6 x^{3}+7 x^{2}-3 x+1$
b) $f(x)=(x-1)\left(x^{2}+x-6\right)$
c) $g(x)=x(x+2)(x-3)^{2}(2 x+1)$
d) $h(x)=-(x-1)(x-3)(x+2)(x+1)$

OER 1: West Texas A\&M University Tutorial 35: Graphs of Polynomial Functions
Practice Problems from the Text
Page 246, Exercises 3.1.1: \#1 - 32 (odd numbers)

Long Division and Synthetic Division

Long Division

The Division Algorithm

If $\boldsymbol{P}(\boldsymbol{x})$ and $\boldsymbol{D}(\boldsymbol{x})$ are polynomials, with $\boldsymbol{D}(\boldsymbol{x}) \neq \mathbf{0}$, then there are unique polynomials $\boldsymbol{Q}(\boldsymbol{x})$ and $\boldsymbol{R}(\boldsymbol{x})$, where $\boldsymbol{R}(\boldsymbol{x})$ is either $\mathbf{0}$ or of degree less than the degree of $\boldsymbol{D}(\boldsymbol{x})$, such that

$$
P(x)=D(x) \cdot Q(x)+R(x)
$$

The polynomials $\boldsymbol{P}(\boldsymbol{x})$ and $\boldsymbol{D}(\boldsymbol{x})$ are called the Dividend and divisor respectively $Q(x)$ is called the quotient
$\boldsymbol{R}(\boldsymbol{x})$ is called the remainder
For Example: If we divide $6 x^{2}-26 x+12$ by $x-4$ we get

$$
6 x^{2}-26 x+12=(x-4)(6 x-2)+4
$$

In the Division Algorithm Format:

$$
\begin{aligned}
& P(x)=6 x^{2}-26 x+12 \text { is the Dividend; } \\
& D(x)=x-4 \text { is the Divisor; } \\
& Q(x)=6 x-2 \text { is the Quotient and } \\
& R(x)=4 \text { is the Remainder }
\end{aligned}
$$

Example 1: Divide $\left(x^{4}-2 x^{2}+x-2\right) \div\left(x^{2}+x-4\right)$
Solution: By Division Algorithm:

$$
x^{4}-2 x^{2}+x-2=\left(x^{2}+x-4\right) \cdot Q(x)+R(x)
$$

Where $\boldsymbol{Q}(\boldsymbol{x})$ and $\boldsymbol{R}(\boldsymbol{x})$ are polynomials to be determined using Polynomial long Division
In dividing polynomials using Long Division:
First we must insert zero placeholders for missing terms and rewrite the division as:

$$
\left(x^{4}+0 x^{3}-2 x^{2}+x-2\right) \div\left(x^{2}+x-4\right)
$$

Next, set up the polynomial division as a standard division problem and repeat the steps Divide, Multiply, Subtract, Carry Down over and over until the divisor no longer may be divided into the result at the bottom.

Step 1: We eliminate \boldsymbol{x}^{4} from the dividend, to do so we need to multiply the divisor by x^{2} and subtract the product from the dividend and bring down x to get a new dividend, $-x^{3}+2 x^{2}+x$

Step 2: Next we eliminate $-\boldsymbol{x}^{3}$ from the new dividend, to do so multiply the divisor by $-\boldsymbol{x}$ and subtract the product from $-x^{3}+2 x^{2}+x$ and bring down -2 , which gives a second new dividend $3 x^{2}-3 x-2$. Repeat this process for the new dividend, until we get a dividend of degree smaller than the divisor, $x^{2}+x-4$

$$
\begin{array}{r}
x ^ { 2 } + x - 4 \longdiv { x ^ { 4 } - x + 3 } \begin{array} { c }
{ \frac { x ^ { 4 } + x ^ { 3 } - 4 x ^ { 2 } } { 0 - x ^ { 3 } + 2 x ^ { 2 } + x - 2 } } \\
{ \frac { - x ^ { 3 } - x ^ { 2 } + 4 x } { 0 + 3 x ^ { 2 } - 3 x - 2 } } \\
{ \frac { 3 x ^ { 2 } + 3 x - 1 2 } { - 6 x + 1 0 } }
\end{array}
\end{array}
$$

Since, $-\mathbf{6 x}+\mathbf{1 0}$ is of smaller degree than $x^{2}+x-4$, we stop the process here.
The polynomial $x^{2}-x+3$ is Quotient, and $-\mathbf{6 x}+\mathbf{1 0}$ is reminder; and so,

$$
x^{4}-2 x^{2}+x-2=\left(x^{2}+x-4\right) \cdot\left(x^{2}-x+3\right)+(-6 \mathbf{x}+10)
$$

Example 2: Using Long Division, find the quotient and the remainder of each of the following.
a) $f(x)=\frac{3 x^{3}+2 x-4}{x^{2}-4}$
b) $f(x)=\frac{5 x^{4}+3 x^{2}+2 x-8}{2 x^{2}+2 x-8}$
c) $f(x)=\frac{x^{4}+2 x^{3}-6 x^{2}-2}{x-1}$

OER: West Texas A\&M University Tutorial 36: Long Division

Homework Practice Problems from the Text
Exercise 3.2.1 Page 265 \#1 - 6

Synthetic Division - The Shortcut for Dividing by $(x-c)$

When dividing a polynomial $\boldsymbol{f}(\boldsymbol{x})$ by a linear factor $(\boldsymbol{x}-\boldsymbol{c})$, we can use a shorthand notation saving steps and space.

Procedure for Synthetic Division; we proceed with example

Example 3: Divided $f(x)=3 x^{3}+2 x-1$ by $(x-4)$.

1. Insert zero place holder for the missing term: $f(x)=3 x^{3}+0 x^{2}+2 x-1$
2. Write the value of "c" and the coefficients of $\boldsymbol{f}(\boldsymbol{x})$ in a row. In Example $3 \mathbf{c}=4$, and the coefficients are $\mathbf{3 , 0 , 2}$, and $\mathbf{- 1}$.

$4 |$| 3 | 0 | 2 | -1 |
| :--- | :--- | :--- | :--- |
| | | | |

3. Carry down the first coefficient. In this case carry down the 3 .

4. Multiply this carried down coefficient by the value of c .

In this case, multiply $3 \bullet 4=12$. Place this result in the next column.

5. Add the column entries and place result at bottom. In this case you add $\mathbf{0}+\mathbf{1 2}$ to get $\mathbf{1 2}$. Multiply this addition result by " c " and place in next column. In this case you multiply $12 \cdot 4=48$

4 \begin{tabular}{c}

4

3 \& 0 \& 2 \& -1

\& 12 \& 48 \&

\hline
\end{tabular}

6. Repeat Step 4 for all columns. In this example, you get

7. The bottom row of numbers reveals the answer along with the remainder. In this case, the numbers 31250199 indicate an answer of $3 x^{2}+12 x+50$, with remainder 199 or $3 x^{2}+12 x+50+199 /(x-4)$

Note: The answer will always have degree one less than the dividend.

Example 4: Using synthetic division, find the quotient and remainder
a) $f(x)=\frac{x^{4}+2 x^{3}-6 x^{2}-2}{x-1}$
b) $x^{5}+32 \div x+2$

Example 3.2.1 Page 261: Reading
Homework Practice Problems from the Text
Exercise 3.2.1 Page 265 \#7-20

The Factor Theorem:

For a polynomial $f(x)$, if $f(\boldsymbol{c})=0$, then $\boldsymbol{x}-\boldsymbol{c}$ is a factor of $f(x)$.

Note: $\boldsymbol{x}-\boldsymbol{c}$ is a factor of $f(\boldsymbol{x})$ means, the remainder when $\boldsymbol{f}(\boldsymbol{x})$ divided by $\boldsymbol{x}-\boldsymbol{c}$ is $\mathbf{0}$
Example 5: Let $f(x)=x^{3}-\mathbf{2} \boldsymbol{x}^{2}$.

$$
\boldsymbol{f}(\mathbf{2})=\mathbf{0} \text {, so by the Factor Theorem, } \boldsymbol{x}-\mathbf{2} \text { is a factor of } \boldsymbol{f}(\boldsymbol{x})
$$

Example 6: Let $f(x)=x^{3}+2 x^{2}-5 x-6$
a) Use long division to determine whether $x+3$ and $x-3$ are factors of $\boldsymbol{f}(\boldsymbol{x})$.
b) Use The Factor Theorem to determine whether $\boldsymbol{x}+\mathbf{3}$ and $\boldsymbol{x}-\mathbf{3}$ are factors of $\boldsymbol{f}(\boldsymbol{x})$.
c) Use synthetic division to determine whether $x+3$ and $x-3$ are factors of $\boldsymbol{f}(\boldsymbol{x})$.

The Remainder Theorem:

If $\boldsymbol{f}(\boldsymbol{x})=(\boldsymbol{x}-\boldsymbol{c}) \boldsymbol{Q}(\boldsymbol{x})+\boldsymbol{R}$, then $\boldsymbol{f}(\boldsymbol{c})=\boldsymbol{R}$. That is, the remainder when dividing the polynomial $\boldsymbol{f}(\boldsymbol{x})$ by $\boldsymbol{x}-\boldsymbol{c}$ is the same as the value of the function evaluated at $\boldsymbol{x}=\boldsymbol{c}$.

Example 7: Using the Remainder Theorem, find the remainder when $f(x)=x^{3}+2 x^{2}-5 x-6$ is divided by:
a) $\boldsymbol{x}+2$
b) $x-1$

Example 3.2.2 Page 362: Reading

Example 8: Decide whether the numbers -3, 2, are zeros of the polynomial
$f(x)=3 x^{3}+5 x^{2}-6 x+18$; use both Synthetic Division and the Remainder Theorem
Example 9: Factor the polynomial $f(x)=x^{3}+5 x^{2}-2 x-24$ and solve the equation $f(x)=0$.
Solution:

1) First, list all integral factors of $\mathbf{- 2 4}$: which are $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 12, \pm 24$
2) Next, check if any of these factor is a zero of $f(x)$

Check for: $\boldsymbol{f}(\pm \mathbf{1})=$?, $\boldsymbol{f}(\pm \mathbf{2})=$?, etc.
3) Finally using the result of 2) and division of polynomials factor $f(x)$

Example 10: Factor the polynomial $f(x)=x^{4}+2 x^{3}-25 x^{2}-50 x$ completely
Example 11: Factor the polynomial $f(x)=x^{4}-8 x^{4}-33$ completely
Example 12: Factor the polynomial $f(x)=x^{4}-5 x^{3}+20 x-16$ completely
Example 12: Solve $x^{3}+4 x^{2}+25 x-100=0$

OER: West Texas A\&M University

Tutorial 37: Synthetic Division and the Remainder and Factor Theorems

OER: West Texas A\&M University on zeros of polynomial functions

Tutorial 38: Zeros of Polynomial Functions, Part I
Tutorial 39: Zeros of Polynomial Functions, Part II

Homework Practice Problems from the Text
Exercise 3.2.1 Page 265 \#21-46 (odd numbers)
Examples YouTube videos

- Polynomial Long Division 1: https://www.youtube.com/watch?v=4u8_AMacu-Y
- Polynomial long Division 2: https://www.youtube.com/watch?v=FXgV9ySNusc
- Synthetic Division 1: https://www.youtube.com/watch?v=1byR9UEQJN0

